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We propose a simple model of how sessile organisms grow, disperse, and die. Our model extends the contact
process to include a spatially explicit representation of organismal growth in addition to the familiar terms
denoting reproduction and mortality. We develop a size-structured mean field theory which predicts an oscil-
latory phase as a consequence of excess reproduction. Monte Carlo simulations of a spatial implementation
show instead a transition from a dilute to a ring-like phase. The ring-like phase arises as a consequence of the
competition for limited space among juvenile and mature organisms, i.e., the ecological cost of reproduction.
We also calculate the phase transition between life and death in the spatial model and find that it is in the same
universality class as directed percolation. Finally, we analyze the onset of the ring-like phase via a spatial
autocorrelation and comment on the model’s applicability to problems in the study of ecosystem structure and
dynamics.
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I. INTRODUCTION

The contact process is one of the simplest examples of a
system exhibiting a nonequilibrium phase transition[1–4]. It
was originally developed as a model of the spread of epi-
demics[5] for which disease dynamics depend upon contact.
More recently, the contact process and its variants have been
applied to the study of spatial ecologies[6–8] where the
behavior of sessile organisms such as plants and trees are
modeled as lattice particles which can disperse, compete, and
die. However, even at the most coarse grained level, the life
cycle of a plant involves dispersal, competition, death, as
well as growth. As is obvious to anyone who has tried to
grow a vegetable garden, “the commonest fate of plants un-
der natural conditions is to die before reaching reproductive
maturity [9].” In this paper, we introduce a class of contact
process models which include the period of ontogeny during
which organisms grow from juveniles to adults capable of
reproduction.

In order to incorporate organismal growth into the contact
process, we begin by defining the model in terms of gener-
alized dispersal and growth mechanisms. We attempt
throughout this paper to retain the analogy with the simple
contact process as much as is possible. Thus far, limited
work has demonstrated how structured populations may im-
pact spatial phenomena such as disease spreading[10,11]
and the fluctuations of population density in pelagic commu-
nities [12]. Applications of size-structured theory to the dy-
namics of plants and trees[13–15] have generally been lim-
ited to nonspatial models; however, see Ref.[16] for an
empirically based alternative.

We begin by introducing a mean field version of the con-
tact process with ontogeny, which we solve, finding the
phase boundary between death, life, and an oscillating steady
state. We then implement a spatially explicit version of the
model using Monte Carlo simulations in the continuum. The
size-structured model in its spatially explicit form generates
a surprising array of patterns(see Fig. 4 for examples). These
patterns include ring-like structures of juveniles surrounding
a central or absent adult. As we will demonstrate, the devel-
opment of these structures stems from the mutual inhibition
of growth via competition for limited local space.

Our aim in investigating the spatial implementation of the
model is twofold: (i) To characterize the phase transition
between life and death and(ii ) to demonstrate the failure of
mean field theory to capture the ecologically meaningful be-
havior of the system far from the persistence–extinction
phase boundary. We also point out a number of ways in
which this model may be applied to studies of size-structured
plant communities.

II. GENERAL MODEL OF A CONTACT PROCESS
FOR GROWING PARTICLES

In the lattice contact process, an individual lattice site
may be occupiedsh=1d or unoccupiedsh=0d. Every occu-
pied site “dies”sh=1→0d at a ratem and creates an off-
spring at a ratec which is then deposited on a randomly
selected nearest neighbor. Only those offspring that are de-
posited on an empty site survive, which is a consequence of
limiting sites to, at most, single occupancy. A mean field
theory of the system is derived by assuming that all sites are
connected and that there are no spatial correlations. The in-
terested reader may refer to the book by Marro and Dickman
[3] for details on the difference between mean field theory
and spatial implementations of the model.

The dynamics of a contact process with ontogeny reflects
a period during which the particle grows from a juvenile to
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an adult. In our conception of the process, every particle has
a d-dimensional centerxi, radius r i, and a size-structured
fecundity rate,csrd. Particles are sessile, die at a ratemsrd,
cannot overlap, and grow larger(when unimpeded) with ve-
locity Gist− tid whereti is the birth time. As our intention is
to mimic the contact process as closely as possible, we as-
sume that organisms only reproduce once they reach their
maximum adult size,ra, i.e.,

csrd = cdsr − rad, s1d

where c is the dispersal rate. We also choose a size-
independent mortality rate,msrd=m. Offspring are deposited
randomly along the locus of points located a distance 2ra
away fromxi. Competition arises as a consequence of par-
ticle collisions. The simplest case is one of hard-core inter-
actions, i.e., particle collisions leads to temporary cessation
of growth. For numerical simulation of such a model, we
keep track of the number of neighbors,ni, and restrict growth
to those particles for whichr , ra and ni =0. Alternative
models will be addressed in Sec. V.

The dynamics of the simple contact process depends on
the ratio of dispersal rate to mortality rate,l;c/m, as well
as the sizeL and dimensiond of the lattice. For a contact
process with ontogeny, the dynamics also depend on the ratio
between growth rate to mortality rate. For linear growth,
Gist− tid=e, we may write such a ratio as

u =
e

sra − r0dm
. s2d

This ratio sets a dimensionless time delay,t=1/u, in the
dynamics as will be explained in the derivation of the mean
field theory in the following section.

III. MEAN FIELD THEORY

In the contact process without ontogeny, the overall den-
sity r behaves, in the mean field approximation, like[3]

dr

dt
= lrs1 − rd − r. s3d

This result leads to the stability condition,l.1, which sepa-
rates the extinction equilibrium,r* =0, from the persistence
equilibrium, r* =1−l−1. The analysis of the contact process
with ontogeny is far more complicated. We begin by deriving
the “equations of motion” forrsr ,td, the density of particles
of size r at time t. We then show how suitable integrations
over the equations of motion lead to a set of coupled time
delay differential equations describing the behavior of mac-
roscopic variables, such as overall number density and frac-
tion of adults. Using these macroscopic differential equa-
tions, we are able to derive formulas describing the
nontrivial persistence equilibrium. We then perform linear
stability analysis on the fixed points of the system, calculat-

ing the phase diagram in the space ofsu ,ld, and demonstrat-
ing the presence of an additional phase where oscillations are
to be expected. We restrict our analysis throughout the sec-
tions that follow to the case of two-dimensional systems, i.e.,
those most often applied to the dynamics of plants and trees.

A. Equations of motion for a size-structured theory

Recall for a moment the definition of the model outlined
in Sec. II. In the contact process with ontogeny, organisms
grow from a minimum sizer0, at birth, to a maximum size
ra, at maturity. In order to fully describe the behavior of the
size-structured population, we will need to derive equations
of motion for the change in density of organisms with radii
r0, r , ra. We will also need appropriate boundary condi-
tions that link the adult population to the birth of new organ-
isms. Without loss of generality, we assumer0=0 andra=1.

There are two important points relevant to the analysis
that follows. The first is that we assume the impact of a
spatially limited process is to restrict the birth of new par-
ticles in a density-dependent fashion. We do not however
explicitly incorporate spatial limitations in the growth of par-
ticles after they are born. Extending the present mean field
theory to include the impact of particle collisions, even in an
approximate sense, would be particularly useful. The second
point is that althoughr denotes the radius of the particles, it
is technically analogous to an age insofar as we allow par-
ticles to grow beyondra=1. However, for the purposes of
calculating area, all particles withr .1 are assigned the ra-
dius r =1.

If rsr ,tdDr is the number density of organisms with radii
betweenr and r +Dr at time t, then

rsr,t + DtdDr = rsr − eDt,tdDrs1 − mDtd, s4d

where 1−mDt is the probability that a particle does not die in
a time periodDt. Expanding both sides of Eq.(4) to first
order yields

] rsr,td
] t

+ e
] rsr,td

] r
+ mrsr,td = 0. s5d

This equation describes a decaying wave in radius-space and
is a standard form when analyzing age- and size-structured
populations[17–19]. What distinguishes Eq.(5) from equa-
tions describing the propagation of physical waves is the
nonlocal coupling ofrs0,td to the density of mature organ-
isms,

rsr = 0,tdDr

= cs1 − AstddE
t−Dr/e

t

dt8s1 − mst − t8ddE
1

`

drrsr,t8d,

s6d

where the fractional area taken up by organisms is[41]
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Astd =E
0

1

drpr2rsr,td +E
1

`

drprsr,td. s7d

WhenAstd.1, thenrsr =0,td=0; this is the effect of space
limitation. Integrating Eq.(6) over t8 yields the number den-
sity of births,

rsr = 0,td =
cs1 − Astdd

e
E

1

`

drrsr,td. s8d

Along with the initial conditions,rsr ,t=0d= fsrd, we now
have a full set of equations describing the size-structured
population in a mean field sense. For ease of reference, the
equations are

] rsr,td
] t

+ e
] rsr,td

] r
+ mrsr,td = 0,

rsr = 0,td =
cs1 − Astdd

e
E

1

`

drrsr,td,

rsr,t = 0d = fsrd.

s9d

Solving for rsr ,td requires a choice of initial conditions,
fsrd. As time increases, it is clear that the impact of initial
conditions steadily dissipates. But how may we make such a
statement quantitative? Note that any particles with radius
r ùet at time t must be relics of the initial distribution.
Whereas, any particles with radiusr ,et must have been
born after the evolution of the system began. Thus, given a
size-independent mortality ratem, we may write

rsr,td = He−mr/ers0,t − r/ed, r , et,

e−mtfsr − etd, r ù et.
s10d

At this point, we may solve the system using one of two
techniques[20–22]: (i) Substituting the steady-state value of
rsr ,td in Eq. (10) into Eq. (8) and then solving for a self-
consistentrsr =0,td from which the other quantities may be
derived, or(ii ) integrating over the equation of motion(5) in
various ways to deduce the relationship between macro-
scopic variables, such as area, birth rate, total number den-
sity, etc., from which the fixed points and their stability may
be derived. We choose to follow the second path as it ap-
pears, to us, to be the more intuitive means to explain the
system dynamics.

B. Dynamics of macroscopic indicators

Thus far, we have made reference to “macroscopic indi-
cators” but we have not yet stated which variables are nec-
essary to fully describe the dynamics of the system. In Table
I, we list the relevant variables that we will make use of in
the course of this analysis. We begin by considering the evo-
lution of pstd, the overall density, which we find by integrat-
ing Eq. (5) from r =0 to r =`,

E
0

`

drS ] rsr,td
] t

+ e
] rsr,td

] r
+ mrsr,tdD = 0. s11d

Becausersr →` ,td→0,

p8std = eRstd − mpstd,
s12d

=cs1 − Astddpastd − mpstd.

Likewise, the evolution ofpastd is found by integrating Eq.
(5) from r =1 to r =`,

pa8std = ers1,td − mpastd,

s13d
=ee−m/eRst − 1/ed − mpastd,

where we may make use of Eq.(10) to replacers1,td. Be-
causeAstd may be expressed in terms ofAjstd andpastd, we
now multiply Eq. (5) by pr2 and integrate fromr =0 to r
=1 to find

Aj8std = − pers1,td + eSjstd − mAjstd,

s14d
=− pee−m/eRst − 1/ed + eSjstd − mAjstd,

where the integration involvingr2]rsr ,td /]r is done by parts.
Finally, by multiplying Eq.(5) by 2pr and integrating from
r =0 to r =1 we find the evolution ofSjstd,

Sj8std = − 2pers1,td + 2pepjstd − mSjstd,

s15d
=− 2pee−m/eRst − 1/ed + 2pespstd − pastdd

− mSjstd.

These four equations,(12)–(15), constitute a complete set
of coupled, time-delay differential equations which we may
use to find the steady-state behavior of the model. It is
worthwhile to write the complete set of equations together,
rewriting Rstd in terms ofpastd andAjstd. In addition, we will
also nondimensionalize time,t→mt, and incorporate the two
dimensionless parameters,l andu, denoting the relative im-
portance of reproduction and growth to mortality, respec-
tively. The equations are

TABLE I. A list of macroscopic indicators for the mean field
theory of contact processes with ontogeny.

Variable Definition Property

pstd e0
` drrsr ,td Overall density

pastd e1
` drrsr ,td Density of adults

Ajstd e0
1 drpr2rsr ,td Area of juveniles

Sjstd e0
1 dr2prrsr ,td Perimeter of juveniles

pjstd pstd−pastd Density of juveniles

Astd Ajstd+ppastd Overall area

Rstd ,rs0,td cs1−Astddpastd /e Birth rate
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p8std = ls1 − Ajstd − ppastddpastd − pstd,

pa8std = le−1/upast − tds1 − Ajst − td − ppast − tdd − pastd,

Aj8std = − ple−1/upast − tds1 − Ajst − td − ppast − tdd + uSjstd − Ajstd,

Sj8std = − 2ple−1/upast − tds1 − Ajst − td − ppast − tdd + 2puspstd − pastdd − Sjstd.

s16d

C. Definitions of the steady states

The fixed points of the system are found by setting the
time derivatives of Eq.(16) to zero. Besides the extinction
equilibrium, there is also a nontrivial fixed point which, after
some algebraic manipulation, may be expressed as

A* =
l − e1/u

l
, s17d

R* =
A*

csud
, s18d

p* = uR* , s19d

pa
* = ue−1/uR* , s20d

Aj
* = A* − pue−1/uR* , s21d

Sj
* = A* /u, s22d

where the constantcsud is defined as

csud = 2pu3 − 2pu3e−1/u − 2pu2e−1/u.

We verify the steady-state predictions using an explicit
time difference solver of Eq.(9) with 102 grid points in ra-
dius space. In Fig. 1, we confirm dependence ofA* on l for
u=5 and 0ølø10. Note that the fixed point only exists
when l.e1/u. For values ofl slightly above this cutoff,
A*sld~l, the same dependence that the contact process re-
tains in the mean field theory(3) for l just greater than 1.

D. Linear stability of the extinction equilibrium

The stability criteria of the extinction equilibrium where
r*srd=0 is already apparent from the form of Eq.(17). Be-
cause there are only two fixed points in the system, we ex-
pect the absorbing state to be unstable wheneverl.e1/u. In
principle, this condition may be found via a linear stability
analysis of Eq.(16). Instead, we offer a heuristic derivation
of this stability criteria.

We posit that the system will go extinct if, on average, the
number of offspring a new organism generates is less than 1.
If this is the case, then perturbations that render the system
nearly vacant, for which space is not a limitation, will drive
the system even further toward extinction. The average num-
ber of expected offspring of a newly seeded particle is

N0 = fProbability of surviving to maturityg

3 fAverage offspring of an adultg,

=e−1/ul. s23d

Hence, the conditionN0.1 is satisfied whenl.e1/u.

E. Linear stability of the persistence equilibrium

The stability of the nontrivial fixed point is difficult to
calculate in a closed form because of the time-delay nature of
Eq. (16). We proceed, pointing out when numerical analysis
must be used to determine stability for a given parameter set.

Consider a general system of time-delay differential equa-
tions,

dx

dt
= F„xstd,xst − td…, s24d

where t.0 is a time delay andx* is a fixed point. For
perturbations aroundx* , the eigenvaluesL are solutions to

DetfA + e−LtB − LI g = 0, s25d

whereA ; ]F/ ]xstd ux=x* , B; ]F/ ]xst−td ux=x* , andI is the
identity matrix. Performing an analogous calculation for the
system of equations(16) yields the following equation
(where the asterisks have been suppressed for ease of nota-
tion):

FIG. 1. Steady-state area as a function ofl whenu=5. Analytic
results of Eq.(17) (solid line) are compared to results from a time
difference solver of Eq.(9) (open circles) using 102 grid points in
radius space.
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Det 3
− 1 −L ls1 − Aj − 2ppad − lpa 0

0 − 1 −L + le−1/us1 − Aj − 2ppade−L/u − le−1/upae
−L/u 0

0 − ple−1/us1 − Aj − 2ppade−L/u − 1 −L + ple−1/upae
−L/u u

2pu − 2pu − 2ple−1/us1 − Aj − 2ppade−L/u 2ple−1/upae
−L/u − 1 −L

4 =0. s26d

After some algebra, we find that two roots of this charac-
teristic equation areL=−1, only one of which may be fac-
tored out. The simplified form of the characteristic equation
is

0 = s1 + Ldfs1 + Ld3 − le−1/us1 − Ajds1 + Ld2e−L/u

− plpae
−1/us2u2 + 2us1 + Ld − s1 + Ld2dg. s27d

Consider the situation with fixedu and increasingl. If the
nontrivial fixed point is to become unstable, it must do so via
an oscillatory solution, as is usually the case for the instabil-
ity of the persistence state of time-delay differential equa-
tions [23]. The transition from stability to instability takes
place whenL= iv. We solve for this crossing point by nu-
merical evaluation of Eq.(27) for fixed u and increasingl.
In this way, we are able to pick out the criticallcsud. An
alternative numerical criterion for finding the onset of a time-
delay induced instability is developed in Ref.[23].

The phase diagram for the region 0.2øuø100 is shown
in Fig. 2. There are a number of interesting aspects of this
phase diagram. Notice that for every value ofu there is a
critical lc where the system will exhibit oscillations. The
physical reason behind these oscillations is simple. If the
system produces too many young, it eventually reaches a
point where the total density exceeds unity, and adults are
unable to produce more seedlings. The density then drops to
a level where young can be produced. However, this period
of barrenness introduces a gap in the size structure which

eventually leads to over-reproduction and recurring oscilla-
tions. Note also that whenu@1, the region over which the
equilibrium fixed point is stable grows monotonically withu.
This implies that even in fast growing systems over-
reproduction leads to instability of the steady state.

It is important to point out that, technically, the oscillating
phase is a spurious consequence of ignoring collisions in the
development of the mean field theory. However, it does point
to the intriguing possibility that a competitively induced
transition might exist in a spatial implementation of the con-
tact process with ontogeny.

IV. SPATIALLY EXPLICIT SIMULATIONS: CONTACT
PROCESS WITH ONTOGENY

In this section, we present results from Monte Carlo simu-
lations of the contact process with ontogeny. We first present
an overview of the types of steady-state behavior found in
the model. We then present evidence that the phase transition
of the contact process with ontogeny obeys the same critical
dynamics as the simple contact process. We then show that
the onset of a “ring-like” phase may be characterized by a
growing peak in the radial distribution function. Throughout
this section, we point out where and how the dynamics of a
contact process with ontogeny differs from expectations of
mean field theory.

Before we discuss the steady state, we mention briefly
some of the details related to the numerical simulation. The
region over which a growing organism extends may be ap-
proximated by a connected cluster of lattice sites or assigned
explicitly in an off-lattice simulation. We are motivated by
computational simplicity and physical transparency in choos-
ing an off-lattice approach to incorporate ontogeny into the
contact process. Monte Carlo simulations are conducted in a
continuum of sizeL3L with periodic boundary conditions.
The dynamics follow the model prescribed in Sec. II. All
simulations are conducted with asynchronous event queues,
where a particle may either die, disperse offspring, or collide
with adjacent particles. Particles only grow when they have
radiusr ,1 and when they are not in contact with any other
particles. We validate the continuum approach by calculating
the phase transition for an off-lattice contact process without
ontogeny. We confirm that the phase transition in a con-
tinuum contact process is in the same universality class as
directed percolation(DP) [4]. We also find that the critical
reproductive value islc=2.015±0.005. Note thatlc for the
continuum contact process is approximately 22% larger than
that for the simple lattice contact process for whichlc
<1.645 [3]. In fact, lc for the off-lattice contact process is
equivalent to that of a lattice contact process model where

FIG. 2. Phase diagram of the mean field theory of the contact
process with ontogeny defined in Eq.(9). The solid curve is the
analytical linel=e1/u separating extinction from persistence. The
dashed curve separating persistence from oscillations derives from a
numerical solution to the stability criteria in Eq.(27).
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approximately 15% of lattice sites are unavailable for dis-
persal[24]. Having established the viability of the continuum
approach, we now turn back to a discussion of the model.

A. Steady-state behavior

The conventional expectation in contact process-type
models is that increasing reproduction leads to increasing
steady-state density. In a contact process with ontogeny, re-
production introduces an ecological cost as a consequence of
competition amongst offspring for limited space to mature.
Such competition is in line with empirical findings on the
growth of seeds in space-limited stands[9,25]. More gener-
ally, this model may be seen as typifying the competition for
locally structured, limited resources, whether spatial or oth-
erwise, which impacts all those who depend on them in a
deleterious fashion. Below, we point out some of the features
of the model, including a nonmonotonic relationship be-
tween the basal area and reproductive rate as well as the
failure of mean field theory to reproduce the form of the
size-structure distribution.

We calculate the steady, state basal area,A*sld, of Monte
Carlo simulations and find thatA*sld is unimodallyrelated to
l. Results from a suite of 32332 simulations are compared
to mean field theory(17) in Fig. 3. The mean field theory
developed in Sec. III neglects interparticle competition and
as such fails to capture the essential dynamics leading to the
turnover of density with increasing reproduction. We have
found evidence of this unimodal curve for varyingu and
varying L. In fact, we believe that there is always almsud,
for which A*sld reaches a maximum, wheree1/u,lmsud,`.
We have insufficient numerical evidence to prove this claim,
as yet. Of additional interest is the shape of the curve,lmsud,
particularly in the limitsu→0 andu→`; does mean field
theory predict this asymptotic shape?

The turnover of density with reproduction begs the ques-
tion, how does such a unimodal curve come about? When
reproduction is low(l*e1/u), interparticle collisions are un-

likely and the steady state is composed of a dilute collection
of particles. As reproductionsld increases, so too does the
likelihood that juvenile particles interfere with each other’s
growth. The continuous size distributionrsr ,td shows a
monotonic decline in density withr, with a discontinuity at
r =1. Finally, as reproduction becomes very largesl@e1/ud,
most juvenile particles are unable to grow to maturity be-
cause of competition with other offspring. Adults generate a
ring of seedlings which retards the spread of a population
and limits its overall basal area. A depiction of the steady-
state dynamics foru=5 andl=3, 5, 20, and 500 is found in
Fig. 4. Notice that the fraction of juveniles increases steadily
with l, whereas mean field theory predicts an asymptotic
approach to a constant fraction whenl@lc. Also note the
development of ring-like structures that are formed whenl
=500 as a consequence of excessive reproduction. Even
when the founding adult has died, the ring remains, with a
hole at its center.

As is evident from this discussion of steady-state behav-
ior, the contact process with ontogeny displays a rich variety
of behavior. Much of this richness is due to the continuous
size distribution,rsr ,td, which characterizes the model with
an infinite number of order parameters. When competition is
unimportant, rsr ,td<rs0,tde−r/u for r ,1, however, this
stable size distribution is modified due to competition. We
continue to seek out generalized forms to describe the non-
trivial size distributions found in steady state.

B. Phase transition between life and death

The boundary between extinction and persistence is found
by looking for power-law behavior in the survival distribu-
tion Pstd, number densitynstd, and spreading rateR2std asl
is varied[26]. We typically use 104 to 23105 ensembles for
each parameter value. All simulations begin with a single
initial adult and are conducted with particle lists to rule out
finite-size effects. The phase boundary derived from mean
field theory is compared to that found in numerical simula-
tions in Fig. 5.

What is the nature of this transition? The dynamics of a
contact process with ontogeny may be likened to that of a
non-Markovian contact process[4,27–31]. The introduction
of a juvenile period implies that the dynamics at a timet
depend on behavior at an earlier timet−t wheret=1/u. The
critical behavior of different types of non-Markovian contact
process have been shown to agree[29] and disagree[28]
with the directed percolation universality class[4]. In the
process of deriving the phase boundary, we also compare the
dynamical critical exponents with those of directed percola-
tion.

Via extensive numerical simulation, we find no evidence
to suggest that the critical behavior of the contact process
with ontogeny differs from that of directed percolation. We
use the method of local slopes to estimate critical exponents
ast→` [32]. For example, consider the survival probability,
Pstd~ t−d. BecausePst /bd~bdt−d, we may write the local ex-
ponent as

dstd =
log„Pstd/Pst/bd…

log b
. s28d

In Fig. 6, we estimated, h, andz, the critical exponents of
Pstd, nstd, andR2std, respectively. Local slopes are measured

FIG. 3. Steady-state fractional area foru=5 with varying l.
Results from simulations of 32332 systems(open circles with
lines) are compared to mean field theoryA* (solid line). Mean field
theory fails to capture the unimodal dependence ofA* on l.
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with b=10. Monte Carlo simulations withu=10 and l
=1.978, 1.980 and 1.982 lead to the prediction thatlcsu
=10d=1.980±0.001, as well as

d = 0.44 ± 0.01, h = 0.235 ± 0.01, z= 1.125 ± 0.01.

s29d

These values are in agreement with estimates of DP critical
exponents[32] and bear out the scaling relation[26],

4d + 2h = dz. s30d

Similar values are obtained for the entire transition line
shown in Fig. 5.

In the regionu,1, we continue to seek out accurate de-
terminations of the phase boundary line as well as its critical
exponents. The rapid increase of the minimum bound on

critical reproductive rate,l=e1/u for u,1, hampers any at-
tempt at extensive numerical simulation.

C. Onset of the ring-like phase

As pointed out in Sec. IV A, the competition between
particles implies the steady state may either exist in a dilute
or ring-like phase. Given a fixed dimensionless growth rate
u, we are interested in quantifying the onset of the ring-like
phase as a function ofl. In the dilute phase, the system is
characterized by chains of connected adults and isolated ju-
veniles. Whereas in the ring-like phase, each adult particle
produces a ring of juvenile particles which impede their and
their progenitor’s continued spread. We attempt to distin-
guish these situations by analyzing the spatial autocorrelation
function of particle centers.

FIG. 4. Snapshot of steady-state behavior of a 50350 system foru=5 andl=3, 5, 20, and 500 for plots(a)–(d), respectively. Open
circles represent juveniles for whomr ,1 and shaded circles represent adults withr =1. Notice the presence of juvenile particle rings around
adult particles atl=500.
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We define the radial distribution function as[33]

gsrd =
2V

N2Ko
i, j

dsr − uxi − x judL , s31d

whereV is the continuum volume,N is the number of par-
ticles, anduxu denotes the absolute magnitude of a vector.
The definition ofgsrd implies that 2prgsrdrdr is the mean
number of particles in an annulus of radiusr and widthdr
surrounding an arbitrary particle. We may estimategsrd from
Monte Carlo simulations by taking a histogram of particle–
pair separations. If we denotehn as the number of particle
pairs with separation betweenrn andrn+Dr, then for a simu-
lation with unit area and particle densityr,

gsrnd =
hn

pr2rnDr
. s32d

If particles are distributed uniformly, thengsrd<1. Devia-
tions from unity indicate correlations in the spatial distribu-
tion of particles at different length scales. We calculate the
radial distribution function,gsrd for simulations withu=10
andl=5 andl=100; the results are found in Fig. 7. Notice
that both simulations have a peak ingsrd at r =2 which de-
rives from particle chains. The peak atr =4 andr =0 is due to
the ring of juvenile particles that surrounds adult particles or
holes in the ring-like phase. The shape of the peak has a
discontinuity of the forms1−r2/16ra

2d−1/2 at r =4ra. A uni-
form distribution of particles on a ring of radiusr =2ra has
the same structure. The discontinuity reflects sweeping
through larger and larger regions of angle with infinitesimal
increases of distance close to the maximal separationr =4ra.

The use of the radial distribution function suggests the
possibility of defining a structural order parameter that re-
flects correlations. In this way, a phase transition between
dilute and ring-like states could be determined in a quantita-
tive fashion.

V. GENERALIZATIONS OF THE MODEL

Our conception of the contact process with ontogeny as
laid out in Sec. II leaves room for modifications with specific
ecological applications in mind. For example, size-dependent
fecundity, csrd or mortality msrd will alter the mean field
condition separating life from death. In accord with other

FIG. 5. Phase boundary between extinction and persistence. Re-
sults from simulations(open circles with line) are compared to
mean field theorylc=e1/u (solid line).

FIG. 6. Local slope measures of the critical exponents,d, h, and
z corresponding to the behavior ofPstd, nstd, and R2std near the
critical point. All simulations are atu=10 withl=1.978, 1.980, and
1.982 corresponding to the curves from bottom to top. In(a) and
(b), 23105 ensembles were used while in(c) 105 ensembles were
used. In all cases, the time is in dimensionless units.
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work on age-structured populations[19], the appropriate
condition for instability of the absorbing state then becomes

E
0

`

drcsrde−e0
r dr8msr8d/e . 1, s33d

wheree is the growth rate. This condition reflects the pres-
ence of a stable size distribution

r*srd
r*s0d

= e−e0
r dr8msr8d/e. s34d

Whencsrd=ldsr −1d andmsrd=m, the stability condition for
general demographic schedules in Eq.(33) reduces to the

condition derived in Sec. III, i.e.,l.e1/u. Do all such demo-
graphic schedules leave unchanged the critical exponents of
the phase transition?

To facilitate such an analysis, we construct a simple lat-
tice analog of the contact process with ontogeny. The model,
a time-delayed contact process(TDCP), is identical to that of
the simple contact process[3,5], except that particles cannot
reproduce until a timet after being deposited on a lattice
site. Near the critical point, collisions between offspring of
the same adult are unlikely and the presence of ontogeny acts
as a time delay between conception and maturation. We
therefore consider the TDCP as representative of the dynam-
ics of the contact process with ontogeny near the phase
boundary. The model dynamics may be described in terms of
the overall density,pstd, and the density of adults,pastd:

p8std = lpastd„1 − pstd… − pstd, s35d

pa8std = le−tpast − td„1 − pst − td… − pastd. s36d

The phase boundary between life and death in the TDCP is
l.et, identical to the contact process with ontogeny. Pre-
liminary analysis of the phase boundary of the TDCP indi-
cates that it is in the same universality class as DP.

Finally, a spatial implementation of the contact process
with ontogeny can accommodate problems with different
dispersal kernels, growth rates, or competition structure.
Here, we point out here one such modification. We modify
the spatial model of Sec. IV so that particles are reproduced
in the annulus 2raø r ø4ra. Simulations of this model at
fixed u and increasingl show a transition from a dilute to a
ring-like phase as well as a unimodal dependence ofA* on l.
This suggests that the ecological cost of increasing reproduc-
tion is a generic property of a contact process with ontogeny
that has local dispersal and spatially exclusive interactions.

VI. CONCLUSIONS

Ontogeny in plants and trees is marked by the physical
growth of sessile organisms over many orders of magnitude.
During this period, seedlings develop into adults capable of
reproduction. This maturation is not inevitable. In fact, the
norm for many plants is the failure of seedlings to become
viable adults. Density-dependent competition inhibits the
maturation of seedlings and can even lead to adverse effects
on plants/trees which produce too many offspring.

In this paper, we extended the simple contact process to
model the transition between juvenile and adult states. We
presented a general scheme for studying contact processes
with ontogeny in Sec. II. We then derived a size-structured
mean field theory which predicts the presence of an oscilla-
tory phase given increasing reproduction. The presence of
oscillatory steady states is common in models of systems
with time delays[19,22,34]. However, the oscillatory steady-
state depends on a coherent global response to changes in
density, a condition unlikely to be satisfied by a spatial
model.

Indeed, we find that steady-state dynamics from Monte
Carlo simulations differ greatly from the predictions of mean
field theory. For example, the total area taken up by particles

FIG. 7. Radial distribution functiongsrd measured for snapshots
of Monte Carlo simulations in a 32332 continuum, wherer is in
units of the adult radius. In(a), l=5, u=10, and the single peak at
r =2 corresponds to the contact between particles. In(b), l=100,
u=10, and there is an additional set of peaks atr =0 and r =4
corresponding to the correlation amongst juveniles(open circles) on
the ring surrounding an adult particle(shaded circles) or hole. The
dashed lines in the main figure represent the error bounds ongsrd
for uniformly distributed particles with densityr. Deviations above
or below this line indicate the presence of significant correlations or
anti-correlations, respectively, in the actual distribution.
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is unimodally related to reproductionl, given a fixed growth
rateu. The ecological cost of reproduction is not prescribed
by the model, rather it emerges naturally from the competi-
tion for limited space.

We also find that increasing reproduction moves the sys-
tem from a dilute phase to a ring-like phase. Examples of
ring-like formations in ecology can be found in the clustering
of redwoods. The formations called “fairy rings” or “family
circles” are a consequence of clonal sprouting, i.e., reproduc-
tive events that are in contact with the mother tree[35–37].

Other models of size-structured competition have been
studied and solved[20–22,38,39], but none have been devel-
oped with the contact process in mind. The contact process
and its variants[2–5,8,40] are the standard phenomenologi-

cal tools for modeling stochastic spatial ecologies. This work
makes it possible to use the contact process to study how
organisms which take up space, in addition to living in space,
affect ecosystem structure and dynamics.
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